Copied to
clipboard

G = C24.85D4order 128 = 27

40th non-split extension by C24 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.85D4, C23.18SD16, C4⋊C4.90D4, (C2×C8).156D4, (C2×Q8).90D4, C2.18(C88D4), (C22×C4).147D4, C23.911(C2×D4), C4.144(C4⋊D4), C22.4Q1623C2, C2.21(Q8⋊D4), C2.13(C8.D4), C4.38(C4.4D4), (C22×C8).71C22, C22.96(C2×SD16), C22.217C22≀C2, C2.32(D4.7D4), C22.109(C4○D8), (C23×C4).273C22, C23.7Q8.18C2, (C22×Q8).63C22, C22.228(C4⋊D4), (C22×C4).1445C23, C2.8(C23.20D4), C2.6(C23.47D4), C4.19(C22.D4), C2.8(C23.10D4), C22.125(C8.C22), C22.114(C22.D4), (C2×C4.Q8)⋊21C2, (C2×Q8⋊C4)⋊13C2, (C2×C4).1037(C2×D4), (C2×C22⋊C8).37C2, (C2×C22⋊Q8).13C2, (C2×C4).772(C4○D4), (C2×C4⋊C4).120C22, SmallGroup(128,767)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — C24.85D4
C1C2C22C2×C4C22×C4C2×C4⋊C4C23.7Q8 — C24.85D4
C1C2C22×C4 — C24.85D4
C1C23C23×C4 — C24.85D4
C1C2C2C22×C4 — C24.85D4

Generators and relations for C24.85D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=f2=d, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=be3 >

Subgroups: 336 in 158 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2.C42, C22⋊C8, Q8⋊C4, C4.Q8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22×C8, C23×C4, C22×Q8, C22.4Q16, C23.7Q8, C2×C22⋊C8, C2×Q8⋊C4, C2×C4.Q8, C2×C22⋊Q8, C24.85D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C2×SD16, C4○D8, C8.C22, C23.10D4, Q8⋊D4, D4.7D4, C88D4, C8.D4, C23.47D4, C23.20D4, C24.85D4

Smallest permutation representation of C24.85D4
On 64 points
Generators in S64
(2 14)(4 16)(6 10)(8 12)(17 45)(18 39)(19 47)(20 33)(21 41)(22 35)(23 43)(24 37)(25 62)(27 64)(29 58)(31 60)(34 51)(36 53)(38 55)(40 49)(42 52)(44 54)(46 56)(48 50)
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 38)(18 39)(19 40)(20 33)(21 34)(22 35)(23 36)(24 37)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 49)(48 50)
(1 61)(2 62)(3 63)(4 64)(5 57)(6 58)(7 59)(8 60)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 45)(18 46)(19 47)(20 48)(21 41)(22 42)(23 43)(24 44)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 49)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 39 5 35)(2 21 6 17)(3 37 7 33)(4 19 8 23)(9 42 13 46)(10 55 14 51)(11 48 15 44)(12 53 16 49)(18 28 22 32)(20 26 24 30)(25 34 29 38)(27 40 31 36)(41 58 45 62)(43 64 47 60)(50 63 54 59)(52 61 56 57)

G:=sub<Sym(64)| (2,14)(4,16)(6,10)(8,12)(17,45)(18,39)(19,47)(20,33)(21,41)(22,35)(23,43)(24,37)(25,62)(27,64)(29,58)(31,60)(34,51)(36,53)(38,55)(40,49)(42,52)(44,54)(46,56)(48,50), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,39,5,35)(2,21,6,17)(3,37,7,33)(4,19,8,23)(9,42,13,46)(10,55,14,51)(11,48,15,44)(12,53,16,49)(18,28,22,32)(20,26,24,30)(25,34,29,38)(27,40,31,36)(41,58,45,62)(43,64,47,60)(50,63,54,59)(52,61,56,57)>;

G:=Group( (2,14)(4,16)(6,10)(8,12)(17,45)(18,39)(19,47)(20,33)(21,41)(22,35)(23,43)(24,37)(25,62)(27,64)(29,58)(31,60)(34,51)(36,53)(38,55)(40,49)(42,52)(44,54)(46,56)(48,50), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,39,5,35)(2,21,6,17)(3,37,7,33)(4,19,8,23)(9,42,13,46)(10,55,14,51)(11,48,15,44)(12,53,16,49)(18,28,22,32)(20,26,24,30)(25,34,29,38)(27,40,31,36)(41,58,45,62)(43,64,47,60)(50,63,54,59)(52,61,56,57) );

G=PermutationGroup([[(2,14),(4,16),(6,10),(8,12),(17,45),(18,39),(19,47),(20,33),(21,41),(22,35),(23,43),(24,37),(25,62),(27,64),(29,58),(31,60),(34,51),(36,53),(38,55),(40,49),(42,52),(44,54),(46,56),(48,50)], [(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,38),(18,39),(19,40),(20,33),(21,34),(22,35),(23,36),(24,37),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,49),(48,50)], [(1,61),(2,62),(3,63),(4,64),(5,57),(6,58),(7,59),(8,60),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,45),(18,46),(19,47),(20,48),(21,41),(22,42),(23,43),(24,44),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,49)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,39,5,35),(2,21,6,17),(3,37,7,33),(4,19,8,23),(9,42,13,46),(10,55,14,51),(11,48,15,44),(12,53,16,49),(18,28,22,32),(20,26,24,30),(25,34,29,38),(27,40,31,36),(41,58,45,62),(43,64,47,60),(50,63,54,59),(52,61,56,57)]])

32 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E4F4G···4N8A···8H
order12···2224444444···48···8
size11···1442222448···84···4

32 irreducible representations

dim1111111222222224
type++++++++++++-
imageC1C2C2C2C2C2C2D4D4D4D4D4C4○D4SD16C4○D8C8.C22
kernelC24.85D4C22.4Q16C23.7Q8C2×C22⋊C8C2×Q8⋊C4C2×C4.Q8C2×C22⋊Q8C4⋊C4C2×C8C22×C4C2×Q8C24C2×C4C23C22C22
# reps1111211221216442

Matrix representation of C24.85D4 in GL6(𝔽17)

100000
0160000
001000
0001600
000010
0000316
,
1600000
0160000
0016000
0001600
000010
000001
,
1600000
0160000
0016000
0001600
0000160
0000016
,
100000
010000
0016000
0001600
000010
000001
,
1300000
0130000
002000
000900
0000315
0000514
,
040000
1300000
000800
002000
000010
0000316

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,3,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,2,0,0,0,0,0,0,9,0,0,0,0,0,0,3,5,0,0,0,0,15,14],[0,13,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,8,0,0,0,0,0,0,0,1,3,0,0,0,0,0,16] >;

C24.85D4 in GAP, Magma, Sage, TeX

C_2^4._{85}D_4
% in TeX

G:=Group("C2^4.85D4");
// GroupNames label

G:=SmallGroup(128,767);
// by ID

G=gap.SmallGroup(128,767);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,422,387,58,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=f^2=d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^3>;
// generators/relations

׿
×
𝔽