p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.85D4, C23.18SD16, C4⋊C4.90D4, (C2×C8).156D4, (C2×Q8).90D4, C2.18(C8⋊8D4), (C22×C4).147D4, C23.911(C2×D4), C4.144(C4⋊D4), C22.4Q16⋊23C2, C2.21(Q8⋊D4), C2.13(C8.D4), C4.38(C4.4D4), (C22×C8).71C22, C22.96(C2×SD16), C22.217C22≀C2, C2.32(D4.7D4), C22.109(C4○D8), (C23×C4).273C22, C23.7Q8.18C2, (C22×Q8).63C22, C22.228(C4⋊D4), (C22×C4).1445C23, C2.8(C23.20D4), C2.6(C23.47D4), C4.19(C22.D4), C2.8(C23.10D4), C22.125(C8.C22), C22.114(C22.D4), (C2×C4.Q8)⋊21C2, (C2×Q8⋊C4)⋊13C2, (C2×C4).1037(C2×D4), (C2×C22⋊C8).37C2, (C2×C22⋊Q8).13C2, (C2×C4).772(C4○D4), (C2×C4⋊C4).120C22, SmallGroup(128,767)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.85D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=f2=d, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=be3 >
Subgroups: 336 in 158 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2.C42, C22⋊C8, Q8⋊C4, C4.Q8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22×C8, C23×C4, C22×Q8, C22.4Q16, C23.7Q8, C2×C22⋊C8, C2×Q8⋊C4, C2×C4.Q8, C2×C22⋊Q8, C24.85D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C2×SD16, C4○D8, C8.C22, C23.10D4, Q8⋊D4, D4.7D4, C8⋊8D4, C8.D4, C23.47D4, C23.20D4, C24.85D4
(2 14)(4 16)(6 10)(8 12)(17 45)(18 39)(19 47)(20 33)(21 41)(22 35)(23 43)(24 37)(25 62)(27 64)(29 58)(31 60)(34 51)(36 53)(38 55)(40 49)(42 52)(44 54)(46 56)(48 50)
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 38)(18 39)(19 40)(20 33)(21 34)(22 35)(23 36)(24 37)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 49)(48 50)
(1 61)(2 62)(3 63)(4 64)(5 57)(6 58)(7 59)(8 60)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 45)(18 46)(19 47)(20 48)(21 41)(22 42)(23 43)(24 44)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 49)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 39 5 35)(2 21 6 17)(3 37 7 33)(4 19 8 23)(9 42 13 46)(10 55 14 51)(11 48 15 44)(12 53 16 49)(18 28 22 32)(20 26 24 30)(25 34 29 38)(27 40 31 36)(41 58 45 62)(43 64 47 60)(50 63 54 59)(52 61 56 57)
G:=sub<Sym(64)| (2,14)(4,16)(6,10)(8,12)(17,45)(18,39)(19,47)(20,33)(21,41)(22,35)(23,43)(24,37)(25,62)(27,64)(29,58)(31,60)(34,51)(36,53)(38,55)(40,49)(42,52)(44,54)(46,56)(48,50), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,39,5,35)(2,21,6,17)(3,37,7,33)(4,19,8,23)(9,42,13,46)(10,55,14,51)(11,48,15,44)(12,53,16,49)(18,28,22,32)(20,26,24,30)(25,34,29,38)(27,40,31,36)(41,58,45,62)(43,64,47,60)(50,63,54,59)(52,61,56,57)>;
G:=Group( (2,14)(4,16)(6,10)(8,12)(17,45)(18,39)(19,47)(20,33)(21,41)(22,35)(23,43)(24,37)(25,62)(27,64)(29,58)(31,60)(34,51)(36,53)(38,55)(40,49)(42,52)(44,54)(46,56)(48,50), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,39,5,35)(2,21,6,17)(3,37,7,33)(4,19,8,23)(9,42,13,46)(10,55,14,51)(11,48,15,44)(12,53,16,49)(18,28,22,32)(20,26,24,30)(25,34,29,38)(27,40,31,36)(41,58,45,62)(43,64,47,60)(50,63,54,59)(52,61,56,57) );
G=PermutationGroup([[(2,14),(4,16),(6,10),(8,12),(17,45),(18,39),(19,47),(20,33),(21,41),(22,35),(23,43),(24,37),(25,62),(27,64),(29,58),(31,60),(34,51),(36,53),(38,55),(40,49),(42,52),(44,54),(46,56),(48,50)], [(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,38),(18,39),(19,40),(20,33),(21,34),(22,35),(23,36),(24,37),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,49),(48,50)], [(1,61),(2,62),(3,63),(4,64),(5,57),(6,58),(7,59),(8,60),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,45),(18,46),(19,47),(20,48),(21,41),(22,42),(23,43),(24,44),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,49)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,39,5,35),(2,21,6,17),(3,37,7,33),(4,19,8,23),(9,42,13,46),(10,55,14,51),(11,48,15,44),(12,53,16,49),(18,28,22,32),(20,26,24,30),(25,34,29,38),(27,40,31,36),(41,58,45,62),(43,64,47,60),(50,63,54,59),(52,61,56,57)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D4 | C4○D4 | SD16 | C4○D8 | C8.C22 |
kernel | C24.85D4 | C22.4Q16 | C23.7Q8 | C2×C22⋊C8 | C2×Q8⋊C4 | C2×C4.Q8 | C2×C22⋊Q8 | C4⋊C4 | C2×C8 | C22×C4 | C2×Q8 | C24 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 6 | 4 | 4 | 2 |
Matrix representation of C24.85D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 3 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 15 |
0 | 0 | 0 | 0 | 5 | 14 |
0 | 4 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 3 | 16 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,3,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,2,0,0,0,0,0,0,9,0,0,0,0,0,0,3,5,0,0,0,0,15,14],[0,13,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,8,0,0,0,0,0,0,0,1,3,0,0,0,0,0,16] >;
C24.85D4 in GAP, Magma, Sage, TeX
C_2^4._{85}D_4
% in TeX
G:=Group("C2^4.85D4");
// GroupNames label
G:=SmallGroup(128,767);
// by ID
G=gap.SmallGroup(128,767);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,422,387,58,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=f^2=d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^3>;
// generators/relations